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Online Maximum-Likelihood Estimation of the
Parameters of Partially Observed

Diffusion Processes
Simone Carlo Surace and Jean-Pascal Pfister

Abstract—We revisit the problem of estimating the pa-
rameters of a partially observed diffusion process, consist-
ing of a hidden state process and an observed process, with
a continuous time parameter. The estimation is to be done
online, i.e., the parameter estimate should be updated recur-
sively based on the observation filtration. We provide a the-
oretical analysis of the stochastic gradient ascent algorithm
on the incomplete-data log-likelihood. The convergence of
the algorithm is proved under suitable conditions regard-
ing the ergodicity of the process consisting of state, filter,
and tangent filter. Additionally, our parameter estimation is
shown numerically to have the potential of improving sub-
optimal filters, and can be applied even when the system
is not identifiable due to parameter redundancies. Online
parameter estimation is a challenging problem that is ubiq-
uitous in fields such as robotics, neuroscience, or finance
in order to design adaptive filters and optimal controllers
for unknown or changing systems. Despite this, theoreti-
cal analysis of convergence is currently lacking for most of
these algorithms. This paper sheds new light on the theory
of convergence in continuous time.

Index Terms—Maximum likelihood estimation, parameter
estimation, filtering theory, gradient methods, stochastic
processes.

I. INTRODUCTION

W E CONSIDER the following family of partially ob-
served dimensional diffusion process under the prob-

ability measure Pθ :

dXt = f(Xt, θ)dt+ g(Xt, θ)dWt (1)

dYt = h(Xt, θ)dt+ dVt (2)

parameterized by θ ∈ Θ, where Θ ⊂ Rp is an open subset. The
process Xt is called the hidden state or signal process with
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values in Rn , and Yt is called the observation process with
values in Rny. In addition, Wt and Vt are independent Rn ′

- and
Rny -valued standard Wiener processes (signal and observation
noise). For all θ ∈ Θ, we assume the initial conditions X0 ∼
p0(θ) to be independent of Wt and Vt , we set Y0 = 0, and we
assume that f(·, θ), g(·, θ), h(·, θ) are functions from Rn ×Rp

to Rn , Rn×n ′
, and Rny , respectively, that ensure the existence

and uniqueness in probability of strong solutions to (1) and (2)
for all t ≥ 0. Additional regularity conditions for f, g, h in both
arguments will be required for the convergence proof.

This setting is familiar in classical filtering theory, where the
problem is to find (assuming the knowledge of θ) the conditional
distribution of Xt conditioned on the history of observations
FY
t = σ{Ys, 0 ≤ s ≤ t}. In this paper, we focus on the follow-

ing parameter estimation problem: assuming that a system with
parameter θ0 generates observations Yt , we want to estimate θ0
from FY

t recursively.
We will consider a well-known algorithm for parameter es-

timation, the so-called stochastic gradient ascent (SGA) on
the incomplete-data log-likelihood function. The stochasticity
comes from the online estimation from the stream of observa-
tions, which provides a noisy estimate of the gradient of the
asymptotic log-likelihood. The main open issue we are address-
ing in this paper is the analysis of the convergence of the pa-
rameter estimate.

This paper is structured as follows. In Section II, we de-
scribe the method of obtaining recursive parameter estimates. In
Section III, we prove the almost sure convergence of the recur-
sive parameter estimates to stationary points of the asymptotic
likelihood. In Section IV, we provide a few numerical examples,
including cases where the model is not identifiable and the filter
is suboptimal. Finally, in Section V, we discuss the theoreti-
cal similarities and differences to related methods of recursive
parameter estimation.

II. METHODS

In this paper, we consider the problem of finding an esti-
mator θ̃t that is FY

t -measurable and recursively computable,
such as to estimate θ0 online from the continuous stream of
observations. For this task, we propose an approach based on
a modification of offline maximum-likelihood estimation, and
therefore need to compute the likelihood of the observations
(also called incomplete-data likelihood) as a function of the
model parameters.
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It is a fundamental theorem of filtering theory1 that the inno-
vation process It , defined by

It = Yt −
∫ t

0
ĥs(θ)ds, ĥs(θ) = Eθ

[
h(Xs, θ)

∣∣∣FY
s

]
(3)

is a (Pθ ,FY
t )-Brownian motion. By applying Girsanov’s theo-

rem, we can change to a measure P̃ under whichYt is a (P̃ ,FY
t )-

Brownian motion and thus (statistically) independent of both the
hidden state Xt and the parameter θ. The change of measure
has a Radon–Nikodym derivative

dPθ

dP̃

∣∣∣
FY
t

= exp
[∫ t

0
ĥs(θ) · dYs −

1
2

∫ t

0
‖ĥs(θ)‖2ds

]
(4)

where · denotes the Euclidean scalar product.
Since the reference measure P̃ , restricted on FY

t , does not
depend on θ, we can express the incomplete-data log-likelihood
function in terms of the optimal filter as

Lt(θ) = log
dPθ

dP̃

∣∣∣
FY
t

=
∫ t

0
ĥs(θ) · dYs −

1
2

∫ t

0
‖ĥs(θ)‖2ds.

(5)

A. Offline Algorithm

We start by describing an offline method for parameter esti-
mation using the log-likelihood function in (5), which serves as
a basis for the online method.

If we were interested in offline learning, our goal would be
to maximize the value of Lt(θ) for fixed t. There is a number
of methods to solve this optimization problem. Among these, a
simple iterative method is the gradient ascent, where an estimate
θ̃k at iteration k is updated according to

θ̃k+1 = θ̃k + γk∂
	
θ Lt(θ)

∣∣∣
θ= θ̃k

(6)

where γk > 0 is called the learning rate, and ∂	θ denotes the
(Euclidean) gradient operator with respect to the parameter θ.
At each iteration, the derivative of the likelihood function has
to be recomputed. From (5), we obtain

∂θLt(θ) =
∫ t

0

(
dYs − ĥs(θ)ds

)	
ĥθs (θ) (7)

where ·	 denotes the matrix transpose and the last factor of the
integrand, denoted by

ĥθs (θ)
.= ∂θ ĥs(θ) (8)

takes values in the matrices of size ny × p and is called the filter
derivative of h with respect to θ.2

1For a detailed exposition of the mathematical background [such as Gir-
sanov’s theorem, changes of measure, or the filtering equation (9)], we suggest
a look at the standard literature on filtering theory, e.g., [1].

2Here and in the sequel, we use the convention that the gradient operator
adds a covariant dimension to the tensor field it acts on. For example, ∂θLt (θ)
takes values that are covectors (row vectors), and the gradient of ĥt (θ), which
has values in Rn y , w.r.t. θ, is a (ny × p)-matrix (Rn y ⊗Rp∗-tensor, where ∗

denotes a dual space)-valued process, which we denote by ĥθt (θ).

In principle, computing the quantities ĥt(θ) requires the so-
lution of the Kushner–Stratonovich filtering equation

dϕ̂t = (Âϕ)tdt+
(
(ĥϕ)t − ĥt ϕ̂t

)
·
(
dYt − ĥtdt

)
(9)

for arbitrary integrable ϕ : Rn → R, where A is the generator
of the processXt . However, exact solutions are rarely available.
In the following, we assume that (9) admits a finite-dimensional
recursive solution or a finite-dimensional recursive approxima-
tion. This means that there is an FY

t -adapted process Mt(θ)
with values in Rm and a mapping ψh : Rm × Θ → Rny such
that either ĥt(θ) = ψh(Mt(θ), θ) (in the case of an exact solu-
tion), or such that the equation holds approximately, i.e., with
some bounds (preferably uniform in time) on

Var‖ĥt(θ) − ψh(Mt(θ), θ)‖.

For example, in the linear-Gaussian case and if X0 has a
Gaussian distribution, the optimal filter can be represented in
terms of a Gaussian distribution with mean μt and variance
Pt , i.e., m = 2, Mt = (μt, Pt), and for hθ (x) = θx, we have
ψh(Mt(θ), θ) = θμt . Apart from the linear-Gaussian case [2]
just mentioned, finite-dimensional (exact) recursive solutions
only exist for a small class of systems, namely the Beneš class
and its extensions [3]–[8]. Meanwhile, finite-dimensional recur-
sive approximations are available for a large class of systems,
but the appropriate choice of approximation is a complex topic
in its own right and will not be explored here. We merely men-
tion a few standard approximation schemes: extended and un-
scented Kalman filters [9], [10], projection or assumed-density
filters (ADFs) [11], [12], particle filters [13], and particle filters
without weights [14]–[16].

Given a finite-dimensional representation of the filter, a corre-
sponding representation of the filter derivative may be formally
defined by differentiation with respect to θ

ĥθt (θ)  ∂θψh(Mt(θ), θ) + ∂M ψh(Mt(θ), θ)Mθ
t (θ) (10)

where ∂M denotes the gradient w.r.t. the first argument of ψh
andMθ

t (θ) denotes the (m× p)-matrix-valued derivative of the
process Mt(θ). For the system in (1) and (2) and for a large
class of exact and approximate filters,Mt(θ) solves a stochastic
differential equation (SDE) of the form

dMt(θ) = R(θ,Mt(θ))dt+ S(θ,Mt(θ))dYt

+ T (θ,Mt(θ))dBt (11)

where R,S, and T go to Rm , Rm×ny , and Rm×m ′
, respec-

tively, and Bt is an m′-dimensional Brownian motion that is
independent of FX,Y

t (e.g., independent noise in particle fil-
ters). By differentiating w.r.t. θ, we find the corresponding SDE
for Mθ

t (θ)

dMθ
t (θ) = R′(Mt(θ),Mθ

t (θ), θ)dt

+ S′(Mt(θ),Mθ
t (θ), θ)dYt

+ T ′(Mt(θ),Mθ
t (θ), θ)dBt (12)
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where the tensor fields R′,S′, T ′ are given by

R′(Mt(θ),Mθ
t (θ), θ) = ∂θR(Mt(θ), θ)

+ ∂MR(Mt(θ), θ)Mθ
t (θ) (13)

and analogously for S and T . In Section IV, we will present
examples of both exact and approximate filters for which these
calculations will be made explicit.

These equations can be conveniently summarized in a single
SDE

dXt(θ) = Φ(Xt(θ), θ)dt+ Σ(Xt(θ), θ)dBt . (14)

Here, Xt(θ) is a D-dimensional process defined by concate-
nating the state Xt , the filter representation, and all the filter
derivatives as follows:

Xt(θ) = C(Xt,Mt(θ),Mθ
t (θ))

.=
(
Xt,1 , . . . , Xt,n ,Mt,1(θ), . . . ,Mt,m (θ),

Mθ1
t,1(θ), . . . ,M

θ1
t,m (θ), . . . ,Mθp

t,1(θ), . . . ,M
θp
t,m (θ)

)	
(15)

whereD = n+m+mp, C : Rn ×Rm ×Rm×p → RD is the
concatenation, and Bt is the Wiener process defined by Bt =
(Wt, Vt , Bt).

B. Online Algorithm

Instead of integrating the gradient of the log-likelihood func-
tion up to time t, an SGA uses the integrand of the gradient
of the log-likelihood (evaluated with the current parameter es-
timate) to update the parameter estimate online as new data are
reaching the observer. The SDE for the SGA takes the form

dθ̃t =

{
γtF (X̃t , θ̃t)dt+ γtH(X̃t , θ̃t)	dVt, θ̃t ∈ Θ

0, θ̃t /∈ Θ
(16)

where X̃t
.= C(Xt, M̃t , M̃

θ
t ) is a diffusion process with SDE

dX̃t = Φ(X̃t , θ̃t)dt+ Σ(X̃t , θ̃t)dBt (17)

consisting of the state as well as the filter and filter derivatives
integrated with the online parameter estimate. The functions
l, F , and H , which go from RD × Θ to R, Rp , and Rny ×p ,
respectively, are defined as

l(x, θ) = ψh(M, θ) ·
[
h(X, θ0) − 1

2ψh(M, θ)
]

(18)

F (x, θ) .= H(x, θ)	 [h(X, θ0) − ψh(M, θ)] (19)

H(x, θ) .= ∂θψh(M, θ) + ∂M ψh(M, θ)M ′ (20)

where (X,M,M ′) = C−1(x) are the components of x. The
function l will be used later on (Eq. (26) and following).

III. CONVERGENCE ANALYSIS

As in any stochastic gradient method, convergence relies on
being able to control the errors of estimating the gradient. This
is usually done by assuming ergodicity of the system and apply-
ing regularity results on a Poisson equation, as in the treatments

of related problems presented in [17] (discrete time), as well
as [18] (continuous time but fully observed). In our case, the
ergodic system consists of the hidden state, the filter, and the
filter derivative. We therefore need to find the assumptions that
guarantee that this system is ergodic, with appropriate regularity
results. We attack this problem in Section III-A by giving condi-
tions directly in terms of the finite-dimensional approximation.
However, this means that these conditions have to be checked
on a case-by-case basis in order to obtain convergence results.
Once the question of ergodicity is settled, the remainder of the
proof is very similar to the one in [18].

Besides this direct verification approach, the only hope of
otherwise obtaining ergodicity seems to be via the optimal fil-
ter. This is due to the fact that the finite-dimensional system is
usually highly degenerate, such that the standard theory which
was used, e.g., in [18], does not apply.3 Ergodicity of the opti-
mal filter for a stochastic dynamical system of the form of (1)
and (2) follows from the ergodicity of the hidden state process
and the nondegeneracy of observations4 (see [25]–[28]). The
problem is then to extend these results to the derivative of the
optimal filter with respect to the parameters, and to transfer them
to approximate finite-dimensional representations of the filter,
given some bounds on the accuracy of the approximation. The
question of transferring ergodicity of the exact filter and filter
derivative to the approximate ones, as well as the ergodicity of
the filter derivative, remains open.

A. Direct Conditions for the Ergodicity of the
Approximate Filter

Here, we give sufficient conditions directly in terms of the
approximate filtering equation. Before stating the conditions,
we introduce the following notation: We say that a function
G : Rd × Θ → R has the polynomial growth property (PGP) if
there are q,K > 0 such that for all θ ∈ Θ

|G(x, θ)| ≤ K(1 + ||x||q ). (21)

Let Gd be the function space defined by all functions G : Rd ×
Θ → R such that the following conditions hold:

1) G(·, θ) ∈ C(Rd);
2) G(x, ·) ∈ C2(Θ); and
3) ∂θG(x, ·) and ∂2

θ G(x, ·) are Hölder continuous with ex-
ponent α > 0.

Let Gd
c be the subset consisting of all G ∈ Gd that are cen-

tered, i.e.,
∫
Rd G(x, θ)μθ (dx) = 0. Let Ḡd be the subset con-

sisting of all G ∈ Gd such that G and all its first and second
derivatives w.r.t. θ satisfy the PGP.

Now, we may state the conditions on the following processes.
Condition 1:
i) The process Xt(θ) is ergodic under Pθ0 , with a unique

invariant probability measure μθ on (RD ,BD ), where
BD is the Borel σ-algebra on RD .

3The theory for elliptic diffusions [19]–[21] is clearly not applicable, and it
is not clear how to apply hypoellipticity or Hörmander’s condition [22]–[24]
in general. For example, in the linear-Gaussian case, the process Xt does not
satisfy the parabolic Hörmander condition.

4Note that the work in [25] contained a gap that has been fully closed by the
work presented in [26].
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ii) For any q > 0 and θ ∈ Θ, there is a constantKq > 0 such
that ∫

RD

(1 + ||x||q )μθ (dx) ≤ Kq . (22)

iii) Define the finite signed measures νθ,i = ∂θi μθ , i =
1, . . . , p, and let |νθ,i(dx)| be their total variation. For
any q > 0 and θ ∈ Θ, there is a constant K ′

q > 0 such
that ∫

RD

(1 + ||x||q ) |νθ,i(dx)| ≤ K ′
q . (23)

iv) Let AX be the infinitesimal generator of Xt(θ) and
let G ∈ GD

c . Then, the Poisson equation AX v(x, θ) =
G(x, θ) has a unique solution v(x, θ) that lies inGD , with
v(·, θ) ∈ C2(RD ). Moreover, if G ∈ ḠD , then v ∈ ḠD

and also ∂x∂θv has the PGP.
v) For all q > 0, E[||X̃t ||q ] <∞ and there is a K > 0 such

that for t large enough

∀θ ∈ Θ Eθ0

[
sup
s≤t

||Xs(θ)||q
]
≤ K

√
t (24)

Eθ0

[
sup
s≤t

||X̃s ||q
]
≤ K

√
t. (25)

�
Condition 2: The function F is in Ḡd (componentwise). The

functionψh is inGm and has the PGP (componentwise). In addi-
tion, l(x, θ), H(x, θ), and Σ have the PGP (componentwise).�

Finally, the following condition on the learning rate is im-
posed.

Condition 3:
∫∞

0 γtdt = ∞,
∫∞

0 γ2
t dt = 0, and there is an

r > 0 such that limt→∞ γ2
t t

1/2+2r = 0. �

B. Results

Let the approximate (in the sense of using the approximate
filter representation) incomplete-data log-likelihood be given by

Lt(θ) =
∫ t

0
l(Xs(θ), θ)ds+

∫ t

0
ψh(Ms(θ), θ) · dVs. (26)

Under the above-mentioned Conditions 1–3, we have the fol-
lowing.

Proposition 1 (Regularity of the asymptotic likelihood):
i) The process 1

t Lt(θ) converges almost surely (a.s.) to
L̃(θ), which is given by

L̃(θ) =
∫
RD

l(x, θ)μθ (dx). (27)

ii) The asymptotic likelihood function L̃(θ) is in C2(Θ),
and the gradient g and Hessian H of the asymptotic
likelihood are given in terms of the invariant measure μθ
and its derivative νθ as

g(θ) .= ∂θ L̃(θ) =
∫
RD

F (x, θ)	μθ (dx) (28)

H(θ) .= ∂	θ ∂θ L̃(θ) =
∫
RD

∂θF (x, θ)μθ (dx)

+
∫
RD

F (x, θ)νθ (dx).
(29)

iii) The functionG(x, θ) .= F (x, θ) − g(θ) is in ḠD ∩GD
c .

iv) There is a constant C > 0 such that

L̃(θ) + ‖g(θ)‖ + ‖H(θ)‖ ≤ C. (30)

Proof: See Appendix A. �
Now we can formulate our main result. Its proof relies on

several lemmas that are given in Appendix B.
Theorem 1 (main theorem): Assume Conditions 1–3 and let

θ̃0 ∈ Θ. Then, with probability one

lim
t→∞

∥∥∥g(θ̃t)
∥∥∥ = 0 or θ̃t → ∂Θ. (31)

Proof: See Appendix C. �

IV. EXAMPLES AND NUMERICAL VALIDATION

Here, we consider two different example filtering problems
and show explicitly how the parameter learning rules are de-
rived. We also study the numerical performance of the learning
method. Since under suitable conditions on the decay of the
learning rate, convergence is guaranteed by the results in the
preceding section, we do not study this case. Instead, we study
whether the method also converges with constant learning rate,
i.e., when violating Condition 3. A constant learning rate is a
sensible choice when the system parameters are expected to
change.

All numerical experiments use the Euler–Maruyama method
to integrate the SDEs. We evaluate the performance of the
learned filter by the mean-squared error (MSE), normalized by
the variance of the hidden process.

A. One-Dimensional (1-D) Kalman–Bucy Filter (Linear
Filtering Problem)

We shall first consider the simple case of the linear filter-
ing problem, for which it is possible to obtain an exact finite-
dimensional filter as well as exact expressions for the asymptotic
likelihood. Here, we have a 3-D parameter vector θ = (a, σ, w),
where a, σ > 0 and w ∈ R, and we have f(x, θ) = −ax,
g(x, θ) = σ, and h(x, θ) = wx, such that the filtering problem
reads

dXt = −aXtdt+ σdWt, dYt = wXtdt+ dVt. (32)

Assuming a Gaussian initialization, i.e., X0 ∼ N (0, σ2/2a),
the optimal filter has a Gaussian distribution with mean μt and
variancePt (the Kalman–Bucy filter [2]). This is a 2-D represen-
tation with Mt(θ) = (μt(θ), Pt(θ))	, which can be expressed
as

dMt(θ) =
( −aμt(θ) − w2μt(θ)Pt(θ)
σ2 − 2aPt(θ) − w2Pt(θ)2

)
dt

+
(
wPt(θ)

0

)
dYt. (33)
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We have ψh(Mt(θ), θ) = wμt(θ).
Let us first calculate the asymptotic log-likelihood. It follows

from the above that Pt(θ) (and its derivatives with respect to θ)
will tend to a unique steady state given by

P∞(θ) =
1
w2

(√
a2 + w2σ2 − a

)
. (34)

By initializing the filter with this steady-state value, the repre-
sentation can be made 1-D, i.e.,

dMt(θ) =
(
−aμt(θ) − w2μt(θ)P∞(θ)

)
dt

+ wP∞(θ)dYt. (35)

The process Xt(θ) consisting of Xt , μt(θ), and the fil-
ter derivatives μat (θ), μ

σ
t (θ), μwt (θ), therefore admits the SDE

representation

dXt(θ) = AXt(θ)dt+B

(
dWt

dVt

)
(36)

with matrices, (37) shown at the bottom of this page and

B =

⎛
⎜⎜⎜⎜⎝

σ0 0
0 wP
0 wPa

0 wPσ

0 P + wPw

⎞
⎟⎟⎟⎟⎠ (38)

where P is a shorthand for P∞(θ) and Pa , etc., are partial
derivatives of P∞(θ).

The process Xt(θ) is ergodic, and its unique invariant prob-
ability measure is multivariate Gaussian with zero mean and
covariance matrix K given by the solution to

BB	 +AK +KA	 = 0. (39)

In terms of this, the asymptotic log-likelihood reads

L̃(θ) = ww0K12 −
1
2
w2K22

=
P∞(θ)w2σ2

0w
2
0 (2a+ P∞(θ)w2)

4a0(a+ P∞(θ)w2)(a+ a0 + P∞(θ)w2)

− P∞(θ)2w4

4(a+ P∞(θ)w2)
.

(40)

With suitable boundaries of the parameter space, all the items
from Condition 1 can be verified.

This model is nonidentifiable from the observations. The set
of critical points of the asymptotic likelihood is characterized
by

∂θ L̃(θ) = 0 ⇔ θ =
(
a0 , σ,

w0σ0

σ

)	
, σ > 0 (41)

i.e., convergence can be guaranteed to one of these points only,
and not to the ground truth parameters θ0 = (a0 , σ0 , w0)	. The
model becomes identifiable if either σ0 or w0 is known. Alter-
natively, one may fix a parameterization for which Xt has unit
variance (i.e., σ =

√
2a).

Let us now derive the parameter update equations. The filter-
ing equations for the mismatched filter, expressed in terms of
the online parameter estimates, read

dμt = −ãtμtdt+ w̃tPt(dYt − w̃tμtdt), μ0 = 0 (42)

dPt =
(
σ̃2
t − 2ãtPt − w̃2

t P
2
t

)
dt, P0 =

σ̃2
0

2ã0
(43)

where the initialization of P0 reflects the prior belief of the
variance of X0 based on the initial parameter estimates.

The online parameter update equations read

dãt = γa ãt w̃tμ
a
t (dYt − w̃tμtdt) (44)

dσ̃t = γσ σ̃tw̃tμ
σ
t (dYt − w̃tμtdt) (45)

dw̃t = γw w̃t (μt + w̃tμ
w
t ) (dYt − w̃tμtdt) . (46)

In order to prevent sign changes of the parameters, we chose
time-dependent learning rates that are proportional to the pa-
rameters (ãt has to stay nonnegative because the filter equations
turn unstable otherwise; for σ̃t and w̃t , it is because of identifi-
ability, i.e., the signs of σ and w are not identifiable from FY

t ).
Here, we introduced the filter derivatives μat , μ

σ
t , and μwt of the

mean, which, together with the filter derivatives of the variance,
satisfy the coupled system of SDEs

dμat = −
[
μt +

(
ãt + w̃2

t Pt
)
μat + w̃2

t μtP
a
t

]
dt

+ w̃tP
a
t dYt

(47)

dPa
t = −

[
2Pt + 2

(
ãt + w̃2

t Pt
)
Pa
t

]
dt (48)

dμσt = −
[(
ãt + w̃2

t Pt
)
μσt + w̃2

t μtP
σ
t

]
dt

+ w̃tP
σ
t dYt

(49)

dPσ
t =

[
2σ̃t − 2

(
ãt + w̃2

t Pt
)
Pσ
t

]
dt (50)

dμwt = −
[
2w̃tμtPt +

(
ãt + w̃2

t Pt
)
μwt
]
dt

− w̃2
t μtP

w
t dt+ [Pt + w̃tP

w
t ] dYt

(51)

dPw
t = −

[
2w̃tP 2

t + 2
(
ãt + w̃2

t Pt
)
Pw
t

]
dt (52)

μa0 = μσ0 = μw0 = 0 (53)

Pa
0 = − σ̃2

0

2ã2
0
, P σ

0 =
σ̃0

ã0
, Pw

0 = 0. (54)

The right-hand sides (RHSs) of the filter derivative equations
and the initial conditions of the filter derivatives are obtained

A =

⎛
⎜⎜⎜⎜⎝

−a0 0 0 0 0
ww0P −a− w2P 0 0 0
ww0P

a −1 − w2Pa −a− w2P 0 0
ww0P

σ −w2Pσ 0 −a− w2P 0
w0(P + wPw ) −w2Pw 0 0 −a− w2P

⎞
⎟⎟⎟⎟⎠ (37)
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from the corresponding equations of the filtered mean and vari-
ance and their initial conditions by differentiating with respect
to each of the parameters (see Section II for details).

First, we investigated one of the cases where the model is
identifiable, i.e., the parameter w was assumed to be known and
we set w̃0 = w0 = 3 and γw = 0. The performance of the algo-
rithm is visualized in Fig. 1 where the learning process is shown
in a single trial, and in Fig. 2, where we show trial-averaged
learning curves for the MSE and the parameter estimates. For
both figures, the ground truth parameters were set to a0 = 1 and
σ0 = 2, and the initial parameter estimates were ã0 = 10 and
σ̃0 =

√
0.2, making for a strongly mismatched model that pro-

duces an MSE close to 1 without learning, i.e., with all learning
rates set to zero. With constant learning rates γa = γσ = 0.03,
the filter performance can be improved to almost optimal per-
formance within a time frame of T = 1000, after which the pa-
rameter estimates approach the ground truth. The log-likelihood
function is not globally concave, but it has a single global max-
imum [see Fig. 3 (left)].

The comparison to online expectation maximization (EM)
(see Section V-C) is shown in Fig. 3 (center and right). Here,
only the parameter a is learned, while σ = σ0 = 2 and w =
w0 = 3. The simulations suggest that online is slightly faster in
the beginning, but the order of convergence is similar for SGA
and online EM. This goes along with very similar computational
complexity: the number of SDEs that has to be integrated is the
same for SGA and online EM.

B. Bimodal State and Linear Observation Model With
(Approximate) Projection Filter

Consider the following system with four positive parameters
(a, b, σ, w):

dXt = Xt

(
a− bX2

t

)
dt+ σdWt (55)

dYt = wXtdt+ dVt. (56)

In this problem, the hidden state Xt has a bimodal stationary
distribution with modes at x = ±

√
a/b. Since the observation

model is linear like in Section IV-A, the parameter learning rules
are expressed in terms of the posterior mean μt = X̂t as

dãt = γa ãt w̃tμ
a
t (dYt − w̃tμtdt) (57)

db̃t = γb b̃t w̃tμ
b
t (dYt − w̃tμtdt) (58)

dσ̃t = γσ σ̃tw̃tμ
σ
t (dYt − w̃tμtdt) (59)

dw̃t = γw w̃t (μt + w̃tμ
w
t ) (dYt − w̃tμtdt) . (60)

We have made the learning rules proportional to the param-
eters in order to prevent sign changes, i.e., to guarantee that
all parameters remain positive. In contrast to the linear model
in Section IV-A, the filtering problem is not exactly solvable.
We use the projection filter on the manifold of Gaussian den-
sities introduced by [12], or equivalently, the Gaussian ADF
in Stratonovich calculus. The mean μt and variance Pt of the

Gaussian approximation to the filter evolve as

dμt =
[
ãtμt − b̃tμ

3
t −

(
3b̃t + w̃2

t

)
μtPt

]
dt

+ w̃tPtdYt , μ0 = 0
(61)

dPt =
[
σ̃2
t +

(
2ãt − w̃2

t P
2
t − 6b̃t(μ2

t + Pt)
)
Pt

]
dt (62)

where the initial variance as a function of the initial parameter
estimates is the variance of the stationary distribution obtained
by solving the equation A† = 0

P0 = Γ
(
ã0 , b̃0 , σ̃0

)
=

∫∞
−∞ x2e

σ̃−2
0

(
ã0 x

2 − 1
2 b̃0 x

4
)
dx

∫∞
−∞ e

σ̃−2
0

(
ã0 x2 − 1

2 b̃0 x4
)
dx

. (63)

By differentiating (61) and (62) with respect to the parameters,
we obtain the following equations for the filter derivatives:

dμat = [μt + αtμ
a
t + βtP

a
t ] dt+ w̃tP

a
t dYt (64)

dPa
t = [2Pt +Atμ

a
t +BtP

a
t ] dt (65)

dμbt =
[
−μt

(
μ2
t + 3Pt

)
+ αtμ

b
t + βtP

b
t

]
dt

+ w̃tP
a
t dYt

(66)

dP b
t =

[
−6Pt

(
μ2
t + Pt

)
+Atμ

b
t +BtP

b
t

]
dt (67)

dμσt = [αtμσt + βtP
σ
t ] dt+ w̃tP

σ
t dYt (68)

dPσ
t = [2σ̃t +Atμ

σ
t +BtP

σ
t ] dt (69)

dμwt = [−2w̃tμtPt + αtμ
w
t + βtP

w
t ] dt

+ [Pt + w̃tP
w
t ] dYt

(70)

dPw
t =

[
−2w̃tP 2

t +Atμ
w
t +BtP

w
t

]
dt (71)

μa0 = μb0 = μσ0 = μw0 = 0 (72)

Pa
0 =

∂

∂ã0
Γ
(
ã0 , b̃0 , σ̃0

)
, P b

0 =
∂

∂b̃0
Γ
(
ã0 , b̃0 , σ̃0

)
(73)

Pσ
0 =

∂

∂σ̃0
Γ
(
ã0 , b̃0 , σ̃0

)
, Pw

0 = 0 (74)

where we introduced the following auxiliary processes:

αt = ãt − w̃2
t Pt − 3b̃t

(
μ2
t + Pt

)
(75)

βt = −
(
w̃2
t + 3b̃t

)
μt (76)

At = −12b̃tμtPt (77)

Bt = 2ãt − 2w̃2
t Pt − 6b̃t

(
μ2
t + 2Pt

)
. (78)

We numerically tested the learning algorithm for this nonlinear
model by simulating a system with a0 = 4, b0 = 3, σ0 = 1, and
w0 = 2, leading to a variance Var(Xt) = 1.17. Initial parameter
estimates were set to a permutation of the ground truth, i.e.,
ã0 = 1, b̃0 = 2, σ̃0 = 3, and w̃0 = 4 and the simulations lasted
T = 2000 (due to the longer time scale compared to the linear
model) with a time step of dt = 10−3 . In Fig. 4, we show an
example of the learning process.

In this case, the suboptimality of the Gaussian approximation
inherent in the projection filter allows the filter error (MSE) to
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Fig. 1. Online learning and filtering in the linear model. The hidden state Xt (black) and Kalman–Bucy state estimate μt [red, shaded region
shows μt ± one standard deviation

√
Pt , cf., (42) and (43)] are shown for the linear model of Section IV-A with parameters a0 = 1, σ0 = 2, and

w0 = 3. The time step is dt = 10−3 , initial parameter estimates are ã0 = 10, σ̃0 =
√

0.2, w̃0 = 3 (i.e., the parameter w0 is known), and the learning
rates are γa = γσ = 0.03 and γw = 0. Top: The entire learning period of T = 1000 shows a gradual improvement of the performance of the filter.
Bottom left: During the first 10 s, the model is still strongly mismatched. Bottom right: During the last 10 s, the filter optimally tracks the hidden state.

Fig. 2. Online learning and filtering in the linear model. The time evolution of the MSE and parameter estimates is shown for the linear model
of Section IV-A (see Fig. 1 caption for details). Left: The moving average of the normalized MSE (time window of 20 s) shows how the learning
algorithm leads to a gradual improvement of the performance of the filter, which eventually reaches the performance of an optimal Kalman–Bucy
filter with ground truth parameters. The black, dashed line shows the theoretical result for the performance of the Kalman–Bucy filter. Right: The
parameter estimates for the unknown parameters converge to the ground truth parameters. All curves are trial averaged (N = 100 trials).

be lower with learning than with the ground truth parameters in
the absence of learning, getting close to the performance of the
optimal filter. This is shown in Fig. 5 in terms of trial-averaged
learning curves. The normalized MSE with learning decreases
within the time frame of T = 2000 and converges below the
MSE for the projection filter with fixed parameters set to the
ground truth. The optimal performance was estimated by run-
ning a particle filter with prior importance function, resampling
at every time step, 1000 particles, and parameters set to the
ground truth [29].

V. RELATED APPROACHES

In this section, we attempt to review similar approaches for
online maximum-likelihood estimation, and their relations to
our method. We note that most of the literature on this topic is

formulated for discrete-time systems, and we realize that the list
of reviewed works is not exhaustive. Some of the approaches
for hidden Markov models (HMMs) discussed here are also
surveyed in more detail in [30]–[32].

A. Recursive Maximum-Likelihood Approaches

This paper is the continuous-time analog of the online SGA
algorithm of [17] and[33] for HMMs. The behavior of the al-
gorithm is analyzed by casting it in the Robbins–Monro frame-
work of stochastic approximations. We used a similar approach
to studying convergence in Section III. More recently, the con-
vergence of discrete-time stochastic gradient algorithms for pa-
rameter estimation in HMMs was studied under more general
conditions [34]. To our knowledge, it is an open problem to ob-
tain a similarly general result for continuous-time models such
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Fig. 3. Parameter estimation in the linear model. Left: The asymptotic log-likelihood function from (40) in the parameter subspace spanned by a
and σ for w = w0 = 3 has a single global maximum near a = a0 and σ = σ0 . The shading shows the region where the function is nonconcave, and
the thick black line is the trial-averaged learning trajectory from Fig. 2. Center: Single-trial convergence of the absolute value of the gradient of the
asymptotic log-likelihood evaluated at the online parameter estimate given by SGA and online EM, respectively. The rate of convergence is similar
for both algorithms. Right: An average over 10 samples reveals that the online EM is initially faster and more variable, but the order of convergence
is the same. Time is measured in units of the intrinsic time constant 1/a0 .

Fig. 4. Online learning and filtering in the nonlinear model. The hidden state Xt (black) and mean μt of the projection filter are shown for
the bimodal model of Section IV-B with parameters a0 = 4, b0 = 3, σ0 = 1, w0 = 2, ã0 = 1, b̃0 = 2, σ̃0 = 3, w̃0 = 4, γa = γb = γw = 10−1 , and
γσ = 0.04. Top: The entire learning period of T = 2000 shows an improvement in both step size between the two attractors and the variability within
both attractors. Bottom left: During the first 100 s, the filter is too sensitive to observations and has an incorrect spacing between attractors. Bottom
right: During the last 100 s, the filter shows good tracking performance.

as the one in this paper. Regarding estimation in a discretized
diffusion model, particle algorithms have been discussed in [35]
and [36].

B. Prediction Error Algorithms

Another stochastic approximation scheme is the recursive
minimum prediction error scheme (see [17] and [37]) for
HMMs. Instead of finding maxima of the likelihood, it finds
minima of the average (squared) prediction error, i.e., the er-
ror between the observations and the predicted observations. In
our continuous-time model, the prediction error is given by the

infinitesimal pseudoinnovation increment dYt − h̃tdt. Formal
differentiation of (dYt − h̃tdt)2 with respect to the parame-
ter yields the same parameter update rule as that derived in
Section II. While a rigorous analysis has not been done, it seems
natural to conjecture that recursive maximum likelihood and re-
cursive minimum prediction error are equivalent in continuous
time.

C. Online EM

EM is a well-known method for offline parameter learning in
partially observed stochastic systems [38], [39]. It is based on
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Fig. 5. Online learning and filtering in the nonlinear model. The time evolution of the MSE and parameter estimates is shown for the bimodal model
of Section IV-B (see Fig. 4 caption for details). Left: The moving average of the normalized MSE (time window of 20 s) shows how the learning
algorithm allows the filter performance to improve to a level that is better than that of a filter with fixed parameters set to the ground truth. However,
it is still slightly worse than an optimal filter; the dashed black line shows the performance of a particle filter with 1000 particles with parameters set
to the ground truth. Right: Despite the low filter error, the parameter estimates do not converge to the ground truth. All curves are trial averaged
(N = 100 trials).

the following application of Jensen’s inequality:

Lt(θ) − Lt(θ̃) = logEθ̃

[
dPθ
dPθ̃

∣∣∣FY
t

]

≥ Eθ̃

[
log

dPθ
dPθ̃

∣∣∣FY
t

]
.= Qt(θ, θ̃).

(79)

Since Qt(θ̃, θ̃) = 0, by maximizing Qt(θ, θ̃) with respect to θ
(for fixed θ̃), we obtain a nonnegative change in the likelihood.
EM thus produces a sequence of parameter estimates θ̃k , k =
0, 1, 2, . . ., with nondecreasing likelihood by iterating the fol-
lowing procedure: compute the quantity Qt(θ, θ̃k ) (the “expec-
tation” or “E” step in EM), then set θ̃k+1 = argmaxθQt(θ, θ̃k )
(the “maximization” or “M” step in EM).

If a parameterization is chosen such that the complete-data
log-likelihood5 takes the form of an exponential family, i.e.,
Ψ(θ) · St , where Ψ is a vector-valued function of the param-
eters and St is a vector of functionals of the hidden state and
observation trajectories, then Qt(θ, θ̃) = Ψ(θ) · Ŝt(θ̃) +R(θ̃),
where

Ŝt(θ̃) = Eθ̃

[
St

∣∣∣FY
t

]
(80)

andR(θ̃) is independent of θ. The “M” step can be done explic-
itly if the equation ∂θΨ(θ) · Ŝt(θ̃) = 0 has a unique closed-form
solution. Meanwhile, the “E” step consists of computing Ŝt(θ̃),
which involves certain nonlinear smoothed functionals of the

5We note that a limitation of EM in the continuous-time model is that the
identification of parameters of the diffusion term gθ has to be treated differently
from that of drift parameters in fθ and hθ . This is due to the fact that there is no
reference measure for the complete model that is independent of the diffusion
parameters. The parameters of the diffusion term are therefore not included in
θ, but are estimated separately from the quadratic variations of hidden state and
observation. This issue is discussed in more detail in [40], see Section IV-B.
This issue is avoided in the gradient-based method here because the reference
measure restricted to the observations is independent of all parameters, including
the ones of the diffusion term.

forms

Eθ̃

[∫ t

0
ϕ1(Xs)dXs

∣∣∣FY
t

]

Eθ̃

[∫ t

0
ϕ2(Xs)dYs

∣∣∣FY
t

]

Eθ̃

[∫ t

0
ϕ3(Xs)ds

∣∣∣FY
t

]

with possibly distinct integrands ϕ1 , ϕ2 , and ϕ3 . In general,
these smoothed functionals are computed using a forward–
backward smoothing algorithm, which is not suitable for online
learning. In a few select cases, the smoothed functionals admit
a finite-dimensional solution (see [41] and the remarks on [39,
p. 99]), or even a finite-dimensional recursive solution (see [40],
[42], and [43]).

In [40], the smoothed functionals of the linear-Gaussian
model are expressed (using the Fisher identity) in terms of
derivatives of the incomplete-data log-likelihood, or a gener-
alization thereof. This enables a recursive computation of the
smoothed quantities of interest, and the auxiliary variables that
need to be integrated (called sensitivity equations) are very sim-
ilar to (47)–(52). The relation between smoothed functionals
and the sensitivity equations has been known for a long time
(see [30, Sec. 10.2] and [44]).

Several authors [45]–[48] have introduced the idea of a fully
recursive form of EM, called online EM. In the papers presented
above, online EM has been explicitly formulated for HMMs
and state-space models by integrating the recursive smoothing
algorithm using the online parameter estimate. This stochas-
tic approximation approach to EM is thus very similar to the
gradient-based approach used here and in the references dis-
cussed in Section V-A.

In continuous-time diffusion models such as studied in
this paper, the recursions found by [40],[42], and [43] can be
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directly applied if the model is linear. We did this in order to
do the comparison of SGA and online EM shown in Fig. 3. For
this particular model, SGA and online EM are comparable in
terms of computational complexity and rate of convergence.
In nonlinear models, online EM can be formulated by making
use of recursive particle approximations of the smoothing
functionals (e.g., by applying the methods in [49] and [50] to
a suitable time discretization of the SDEs). As an alternative,
ADFs or projection filters can be used to approximate the
recursive smoothed functionals. The full development of online
EM in continuous time, as well as its convergence analysis,
remains a topic for future research.

D. State Augmentation Algorithms

The idea is to treat the unknown parameter as a random vari-
able that is either static (dθt = 0) or has dynamics that are
coupled to the hidden state. In both cases, the parameter may
be estimated online by solving the filtering problem for the
augmented state (Xt, θt). While this presents clear advantages
for known dynamics of the hidden parameter, it introduces a
new parameter estimation problem for the parameters of the
dynamics of θt , called hyperparameters. A static prior for θt
is problematic because the resulting filter will usually not be
stable, with negative implications (see [51]) on the behavior of
particle filters that are needed to solve the augmented filtering
problem (but see [52], where stability conditions are discussed
for the discrete-time case). In addition, for many interesting
models, the parameter space may be of much higher dimension
than the state space, introducing high computational costs for
filtering of the augmented state.

E. Maximum-Likelihood Filtering and Identification

The opposite of state augmentation was explored in [53],
where the hidden state is also estimated via maximum likeli-
hood, instead of the usual filtering paradigm using minimum
MSE. Equations for the maximum-likelihood state and param-
eter estimates are then derived. Although these equations are
not directly suitable for recursive identification, they are very
similar to the ones obtained by us in Section II. It remains a
curiosity that the approach of [53] has rarely been cited and has
not been further developed.

VI. CONCLUSION

The problem of estimating parameters in partially observed
systems is old and relevant to many applications. However, the
majority of the literature on this subject is written for discrete-
time processes and for offline learning, whereas, despite of
its enormous importance for filtering and control theory, the
continuous-time case has received little attention. Online gra-
dient ascent in continuous time has only recently been studied
in [18]. The use of a change of measure in order to express
the likelihood function in terms of the filter is not new, but it
seems to be underexploited. To the best of our knowledge, its
only use in parameter estimation is in the technical report pre-

sented in [53]. We found it appropriate to revisit this approach
and to extend the work of [18] to the partially observable case.
Recently, the above results for the fully observed model have
been strengthened to a central limit theorem for the parameter
estimate, see [54].

The main difficulty and open problem is to find conditions
on the generative model that are easy to verify, sufficient for the
convergence of the algorithm, and not too restrictive. Currently,
the most promising avenue for obtaining such conditions is by
settling open questions regarding the ergodicity of the approxi-
mate filter in terms of the exact one, and then using the general
theory that guarantees ergodicity of the exact filter. The latter is
relatively easy to check compared to the explicit conditions on
the approximate filter that we currently give in Section III-A.
We hope that these open questions will be addressed in the
future.

Let us briefly comment on the numerical examples that we
provided. As we showed numerically, the algorithm is capable
of improving filter performance even if the models are uniden-
tifiable and the learning rate constant, even though this cannot
be expected. In addition, the second numerical example showed
that the performance of the filter can be improved even beyond
what is possible with fixed parameters. This result could lead to
new ways of improving the performance of approximate filters
by using the additional degrees of freedom given by the online
parameter estimates for both adaptation (learning) and reduced
filter error. It remains to be explored whether this feature applies
to a large enough class of approximate filters to be useful for
practical applications.

As we showed also in comparison with the online EM al-
gorithm, these naı̈ve methods exhibit rather slow convergence
rates and cannot compete with fast offline methods such as
second-order optimization methods or Nesterov’s accelerated
gradient. However, the main aim of this paper is to advance the
theoretical understanding of convergence using continuous-time
theory. Based on this, it remains a topic for future research to
study the convergence of more elaborate algorithms such as the
ones mentioned above.

APPENDIX A
PROOF OF PROPOSITION 1

i) We have

1
t
Lt(θ) =

1
t

∫ t

0
l(Xs(θ), θ)ds

+
1
t

∫ t

0
ψh(θ,Ms(θ)) · dVs. (81)

By Condition 1(i), the first term on the RHS converges to∫
RD l(x, θ)μθ (dx) = L̃(θ) a.s. as t→ ∞. Consider the

local martingale Mt =
∫ t

0 ψh(θ,Ms(θ)) · dVs . From Itô
isometry, and Conditions 2 and 1(v), it follows that for t
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large enough

E

[(∫ t

0
ψh(θ,Ms(θ)) · dVs

)2
]

= E

[∫ t

0
‖ψh(θ,Ms(θ))‖2 ds

]

≤ E

[∫ t

0
C(1 + ||Ms(θ)||q )ds

]

≤ E

[∫ t

0
C(1 + ||Xs(θ)||q )ds

]

≤ Ct

(
1 + E[sup

s≤t
||Xs(θ)||q ]

)

≤ Ct(1 + C ′√t).

(82)

In short, for t large enough, we have Var[Mt ] ≤ Kt3/2

for some K > 0. Therefore

Var
[ 1
t Mt

]
≤ Kt−1/2 → 0, t→ ∞ (83)

which means that the second term on the RHS of (81)
converges to zero in L2 .
Now consider the process M̃t = 1

t Mt +
∫ t

0
1
s2 Msds.

By Itô’s lemma, this process is the local martingale given
by

∫ t
0

1
s ψh(Ms(θ), θ) · dVs . By applying Itô isometry,

and Conditions 1(v) and 2, we obtain

sup
t>0

E
[
||M̃t ||2

]
≤
∫ ∞

0

E [||ψh(Ms(θ), θ)||q ]
s2 ds

≤ K

∫ ∞

0

1
s2

(
1 + E

[
||Xs(θ)||2

])
ds <∞.

(84)

By the martingale convergence theorem, there is a finite
random variable M̃∞ such that M̃t → M̃∞ a.s. and in
L2 . Therefore also 1

t Mt converges a.s.
ii) We have that ∂θ L̃(θ) = limt→∞

1
t ∂θLt(θ), if the deriva-

tive exists and the limit exists a.s. Due to Condition 2,
the derivative

1
t
∂θLt(θ) =

1
t

∫ t

0
∂θ l(Xs(θ), θ)ds

+
1
t

∫ t

0
∂θψh(Ms(θ), θ)dVs

=
1
t

∫ t

0
F (Xs(θ), θ)	ds

+
1
t

∫ t

0
dV 	

s H(Ms(θ), θ) (85)

exists. This converges to
∫
RD F (x, θ)	μθ (dx) by an ar-

gument analogous to the one in (i).
The representation ofH in terms of the invariant measure
and its derivative follows from Conditions 1(iii) and 2.

iii) This follows from (i) and the fact that F is in Ḡ (see
Condition 2).

iv) By Condition 2, q,K > 0 can be chosen such that the
functions l, F, ∂θF,H grow at most asK(1 + ||x||q ) for
all θ ∈ Θ. From this and the first part of the present
Lemma, it follows that

L̃(θ) =
∫
RD

l(x, θ)μθ (dx)

≤ K

∫
RD

(1 + ||x||q )μθ (dx) ≤ KKq .

(86)

By a similar calculation, we have

‖g(θ)‖ ≤ KKq . (87)

For ‖H(θ)‖, observe that

‖H(θ)‖ ≤
∥∥∥∥
∫
RD

∂θF (x, θ)μθ (dx)
∥∥∥∥

+
∥∥∥∥
∫
RD

F (x, θ)νθ (dx)
∥∥∥∥

≤ KKq +
∥∥∥∥
∫
RD

F (x, θ)νθ (dx)
∥∥∥∥

(88)

where the first term on the RHS was treated in the same
way as in the bound for L̃(θ) and ‖g(θ)‖. For the second
term, we observe that

∥∥∥∥
∫
RD

F (x, θ)νθ (dx)
∥∥∥∥

2

=
p∑

i,j=1

(∫
RD

Fi(x, θ)νθ,j (dx)
)2

≤
p∑

i,j=1

(∫
RD

|Fi(x, θ)| |νθ,j (dx)|
)2

≤
p∑

i,j=1

(∫
RD

||F (x, θ)|| |νθ,j (dx)|
)2

≤ p2K2K ′2
q .

(89)

The claimed inequality (30) then follows by settingC =
3KKq + pKK ′

q . �

APPENDIX B
LEMMAS

Here, we adapt the lemmas of [18] to fit the present set-
ting. As in [18], the proofs of the lemmas require results
from [21], but in a slightly more general form than what was
needed in [18]. Despite the strong similarities between our
proofs and the proofs in [18], for the convenience of the reader
we shall write them out in full detail and in the appropriate
notation.

For Lemmas 1–4, we assume that Conditions 1–3 hold and
that the first exit time from Θ is infinite (see the proof of Theorem
1). In addition, we define the following. Let κ, λ > 0 and define
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the (Pθ0 ,Ft)-stopping times σ0 = 0 and σk , τk , k ∈ N as

τk
.= inf

{
t > σk−1 : ‖g(θ̃t)‖ ≥ κ

}
(90)

σk
.= sup

{
t > τk : 1

2 ‖g
(
θ̃τk

)
‖ ≤ ‖g(θ̃s)‖

≤ 2‖g
(
θ̃τk

)
‖, s ∈ [τk , t] and

∫ t

τk

γsds ≤ λ
}
.

(91)

Lemma 1: Let η > 0 and define

Γk,η
.=
∫ σk +η

τk

γs

(
F
(
X̃s , θ̃s

)
− g

(
θ̃s

)	)
ds. (92)

Then, with probability one

lim
k→∞

‖Γk,η‖ = 0. (93)

Proof: Consider the function G(x, θ) = F (x, θ) − g(θ)	.
By definition, we have

∫
RD

G(x, θ)μθ (dx) = 0 (94)

and by Condition 2 we have that the components of G(x, ·) are
in ḠD . Therefore, by Condition 1(iv), the Poisson equation

AX v(x, θ) = G(x, θ),
∫
RD

v(x, θ)μθ (dx) = 0 (95)

has a unique twice differentiable solution with

||v(x, θ)|| + ||∂θv(x, θ)|| + ||∂2
θ v(x, θ)|| ≤ K ′(1 + ||x||q ′).

(96)

Let u(t, x, θ) = γtv(x, θ), and apply Itô’s lemma to each com-
ponent of u

ui(σ, X̃σ , θ̃σ ) − ui(τ, X̃τ , θ̃τ ) =
∫ σ

τ

∂sui(s, X̃s , θ̃s)ds

+
∫ σ

τ

AXui(s, X̃s , θ̃s)ds+
∫ σ

τ

Aθui(s, X̃s , θ̃s)ds

+
∫ σ

τ

γs tr
[
Σ̂
(
X̃s , θ̃s

)
H
(
X̃s , θ̃s

)
∂	θ ∂xui(s, X̃s , θ̃s)

]
ds

+
∫ σ

τ

∂xui(s, X̃s , θ̃s)Σ
(
X̃s , θ̃s

)
dBs

+
∫ σ

τ

γs∂θui(s, X̃s , θ̃s)H
(
X̃s , θ̃s

)	
dVs (97)

where AX and Aθ are the infinitesimal generators of the pro-
cesses Xt and θ̃t , respectively, Σ̂(x, θ) denotes the (D × ny )-
matrix consisting of the rows n′ + 1, n′ + 2, . . . , n′ + ny of
the matrix Σ(x, θ), and ∂	θ ∂xuk (s, x, θ)ij = ∂θi ∂xj uk (s, x, θ).

Using the Poisson equation and the previous identity, we obtain

Γk,η =
∫ σk +η

τk

γs

(
F
(
X̃s , θ̃s

)
− g

(
θ̃s

))	
ds

=
∫ σk +η

τk

γsG
(
X̃s , θ̃s

)
ds =

∫ σk +η

τk

γsAX v
(
X̃s , θ̃s

)
ds

=
∫ σk +η

τk

AXu
(
s, X̃s , θ̃s

)
ds

= γσk +η v(X̃σk +η , θ̃σk +η ) − γτk v(X̃τk , θ̃τk )

−
∫ σk +η

τk

γ̇sv
(
X̃s , θ̃s

)
ds−

∫ σk +η

τk

γsAθ v
(
X̃s , θ̃s

)
ds

−
∫ σk +η

τk

γ2
s tr
[
Σ̂
(
X̃s , θ̃s

)
H
(
X̃s , θ̃s

)

× ∂	θ ∂x
]
v
(
X̃s , θ̃s

)
ds

−
∫ σk +η

τk

γs∂xv
(
X̃s , θ̃s

)
Σ
(
X̃s , θ̃s

)
dBs

−
∫ σk +η

τk

γ2
s ∂θv

(
X̃s , θ̃s

)
H
(
X̃s , θ̃s

)	
dVs.

(98)

Define

J
(1)
t

.= γt sup
s≤t

||v
(
X̃s , θ̃s

)
||. (99)

By using Condition 1, we have

E

[(
J

(1)
t

)2
]

= E

[
γ2
t sup
s≤t

||v
(
X̃s , θ̃s

)
||2
]

≤ Kγ2
t E

[
1 + sup

s≤t
||X̃s ||q

]

= Kγ2
t

(
1 + E

[
sup
s≤t

||X̃s ||q
])

≤ KK ′γ2
t (1 +

√
t)

≤ K ′′γ2
t

√
t

(100)

where the first two inequalities use Conditions 1(iv) and (v),
respectively. We choose an r > 0 such that γ2

t t
1/2+2r → 0 for

t→ ∞ (this is possible due to Condition 3), and we pick T > 0
large enough such that γ2

t t
1/2+2r ≤ 1 for t ≥ T . In addition,

for each 0 < δ < r, we define the eventAt,δ
.= {J (1)

t tr−δ ≥ 1}.
For t ≥ T

P(At,δ ) ≤ E
[
J

(1)
t tr−δ

]
≤ E

[(
J

(1)
t

)2
]
t2r−2δ

≤ K ′′γ2
t t

1/2+2r−2δ ≤ K ′′t−2δ

(101)
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where (100) was used in the second inequality.6 We therefore
have that

∞∑
n=1

P(A2n ,δ ) <∞. (102)

By the Borel–Cantelli lemma, only finitely many events A2n ,δ
can occur. Therefore, there is a random index n0 such that
J

(1)
2n 2n(r−δ) ≤ 1 for all n ≥ n0 . Alternatively, we can say that

there is a finite positive random variable ξ and a deterministic
n1 ∈ N such that

J
(1)
2n 2n(r−δ) ≤ ξ, n ≥ n1 (103)

(e.g., choose ξ = max{max1≤n ′≤n0 J
(1)
2n ′ 2n

′(r−δ) , 1}). For t ∈
[2n , 2n+1] and n ≥ n1 , we therefore have

J
(1)
t = γt sup

s≤t

∣∣∣
∣∣∣v
(
X̃s , θ̃s

)∣∣∣
∣∣∣ ≤ γ2n sup

s≤t

∣∣∣
∣∣∣v
(
X̃s , θ̃s

)∣∣∣
∣∣∣

≤ γ2n sup
s≤2n + 1

∣∣∣
∣∣∣v
(
X̃s , θ̃s

)∣∣∣
∣∣∣

≤ Kγ2n + 1 sup
s≤2n + 1

∣∣∣
∣∣∣v
(
X̃s , θ̃s

)∣∣∣
∣∣∣

= KJ
(1)
2n + 1 ≤ K

ξ

2(n+1)(r−δ) ≤ K
ξ

tr−δ

(104)

and as a consequence, J (1)
t → 0 a.s. as t→ ∞.

Next, define

J
(2)
t =

∫ t

0

∣∣∣
∣∣∣γ̇sv

(
X̃s , θ̃s

)
+ γsAθ v

(
X̃s , θ̃s

)

+ γ2
s tr
[
Σ̂
(
X̃s , θ̃s

)
H
(
X̃s , θ̃s

)
∂	θ ∂x

]
v
(
X̃s , θ̃s

) ∣∣∣
∣∣∣ds.

(105)

Due to the PGP of H , Σ̂, and v (see Conditions 1 and 2), we
have

sup
t>0

E
[
J

(2)
t

]
≤ K

∫ ∞

0

(
γ̇s + γ2

s

) (
1 + E[||X̃s ||q ]

)
ds

≤ KC

∫ ∞

0

(
γ̇s + γ2

s

)
ds <∞.

(106)

In the first inequality, we additionally used the fact that Aθ

contains at least a factor of γt , in the second one we relied on
Condition 1(v), and in the third inequality we used Condition 3.
Thus, J (2)

t converges to a finite random variable a.s.
Finally, we have the term

J
(3)
t =

∫ t

0
γs∂xv

(
X̃s , θ̃s

)
Σ
(
X̃s , θ̃s

)
dBs

+
∫ t

0
γ2
s ∂θv

(
X̃s , θ̃s

)
H
(
X̃s , θ̃s

)	
dVs.

(107)

6The first inequality in (101) is elementary: For a nonnegative random variable
Y with law p, we have

P(Y ≥ 1) =

∫ ∞

1

p(dy) ≤
∫ ∞

1

yp(dy) ≤
∫ ∞

0

yp(dy) = E(Y ).

By using Itô isometry and the same PGPs as in (106), we obtain

sup
t>0

E
[
||J (3)

t ||2
]

=
∫ ∞

0
γ2
sE

[
‖∂xvΣ‖2

]
ds

+
∫ ∞

0
γ4
sE

[∥∥∂θvH	∥∥2
]
ds

+ 2
∫ ∞

0
γ3
s trE

[
∂xvΣ̂H	∂	θ v

	
]
ds

≤ CK

∫ ∞

0

(
γ2
s + γ3

s + γ4
s

) (
1 + E[||X̃s ||q ]

)
ds

≤ CKC ′
∫ ∞

0

(
γ2
s + γ3

s + γ4
s

)
ds <∞. (108)

Thus, by Doob’s martingale convergence theorem, J (3)
t con-

verges to a square integrable random variable a.s.
Finally, we note that

||Γk,η || ≤ J
(1)
σk +η + J (1)

τk
+ J

(2)
σk +η − J (2)

τk

+ ||J (3)
σk +η − J (3)

τk
|| → 0, k → ∞.

(109)

�
Lemma 2: Let L be the Lipschitz constant of g. Choose

λ > 0 such that for a given κ > 0 (this is the parameter of
the stopping times τk ) we have 3λ + λ

4κ = 1
2L . For k large

enough and η > 0 small enough,
∫ σk +η
τk

γsds > λ. In addition,

a.s., λ
2 ≤

∫ σk
τk

γsds ≤ λ.
Proof: This proof goes through exactly like the proof of [18,

Lemma 3.2], with the only modification that the martingale in
that proof takes the form

∫ t

0
γs
g
(
θ̃s

)

Rs
H
(
X̃s , θ̃s

)	
dVs.

�
Lemma 3: Suppose that θ̃t ∈ Θ for t ≥ 0 and that there is an

infinite number of intervals [τk , σk ). There is a β > 0 such that
for k > k0

L̃(θ̃σk ) − L̃
(
θ̃τk

)
≥ β (110)

a.s.
Proof: By using Itô’s lemma and the parameter update SDE

(16), we obtain four terms

L̃(θ̃σk ) − L̃
(
θ̃τk

)
=
∫ σk

τk

γs

∥∥∥g
(
θ̃s

)∥∥∥2
ds

+
∫ σk

τk

γsg
(
θ̃s

)
H
(
X̃s , θ̃s

)	
dVs

+
∫ σk

τk

γ2
s

2
tr

[
H
(
X̃s , θ̃s

)
H
(
θ̃s

)
H
(
X̃s , θ̃s

)	]
ds

+
∫ σk

τk

γsg
(
θ̃s

)
·
[
F
(
X̃s , θ̃s

)
− g

(
θ̃s

)	]
ds

= Ω1,k + Ω2,k + Ω3,k + Ω4,k (111)
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where H is used to denote the Hessian of L̃, see (29). By virtue
of the definition of the stopping times and Lemmas 1 and 2

Ω1,k =
∫ σk

τk

γs

∥∥∥g
(
θ̃s

)∥∥∥2
ds

≥

∥∥∥g
(
θ̃τk

)∥∥∥2

4

∫ σk

τk

γsds ≥

∥∥∥g
(
θ̃τk

)∥∥∥2

8
λ(κ).

(112)

We define

Rt =

⎧⎨
⎩
||g
(
θ̃τk

)
||, t ∈ [τk , σk ) for some k ≥ 1,

κ, else
(113)

such that we can write

Ω2,k =
∫ σk

τk

γsg
(
θ̃s

)
H
(
X̃s , θ̃s

)	
dVs

=
∥∥∥g
(
θ̃τk

)∥∥∥
∫ σk

τk

γs
g
(
θ̃s

)

Rs
H
(
X̃s , θ̃s

)	
dVs.

(114)

Since ||g
(
θ̃s

)
||/Rs ≤ 2, it follows from the Itô isometry and

Conditions 1(v) and 2 that

sup
t≥0

E

⎡
⎢⎣
⎛
⎝
∫ t

0
γs
g
(
θ̃s

)

Rs
H
(
X̃s , θ̃s

)	
dVs

⎞
⎠

2⎤
⎥⎦

≤ sup
t≥0

∫ t

0
E

⎡
⎣γ2

s

||g
(
θ̃s

)
||2

R2
s

||H
(
X̃s , θ̃s

)
||2
⎤
⎦ ds

≤ 4
∫ ∞

0
γ2
sE

[∥∥∥H
(
X̃s , θ̃s

)∥∥∥2
]
ds

≤ 4K
∫ ∞

0
γ2
s

(
1 + E

[
||X̃s ||q

])
ds <∞. (115)

By Doob’s martingale convergence theorem, the martingale

Mt =
∫ t

0 γs
g(θ̃s )
Rs

H
(
X̃s , θ̃s

)	
dVs converges to a finite ran-

dom variable M as t→ ∞. Thus, for any ε > 0, there is a k0
such that a.s. we have Ω2,k ≤ ||g(θ̃τk )||ε for all k ≥ k0 .

Next, we consider Ω3,k . Using Conditions 1 and 2 and Propo-
sition 1, we obtain

sup
t≥0

E

[∣∣∣∣
∫ t

0

γ2
s

2
tr

[
H
(
X̃s , θ̃s

)
H
(
θ̃s

)
H
(
X̃s , θ̃s

)	]
ds

∣∣∣∣
]

≤ sup
t≥0

E

[∫ t

0

γ2
s

2

∣∣∣∣tr
[
H
(
X̃s , θ̃s

)
H
(
θ̃s

)
H
(
X̃s , θ̃s

)	]∣∣∣∣ ds
]

≤
∫ ∞

0

γ2
s

2
E
[
||H

(
X̃s , θ̃s

)
||2 ||H

(
θ̃s

)
||
]
ds

≤ K

∫ ∞

0

γ2
s

2

(
1 + E

[
||X̃s ||q

])
ds <∞ (116)

from which it follows that
∫ t

0

γ2
s

2
tr

[
H
(
X̃s , θ̃s

)
H
(
θ̃s

)
H
(
X̃s , θ̃s

)	]
ds

converges to a finite random variable as t→ ∞. Thus, a.s., Ω3,k
must converge to zero as k → ∞.

Finally, we consider the term Ω4,k and define the function
G(x, θ) = g(θ) ·

[
F (x, θ) − g(θ)	

]
, which by definition of g

satisfies
∫
RD G(x, θ)μθ (dx) = 0. By Condition 1(iv), for each

θ ∈ Θ, the Poisson equation AX v(x, θ) = G(x, θ) (where AX
is the infinitesimal generator of the process Xt) has a unique so-
lution vwith

∫
RD v(x, θ)μθ (dx) = 0. Let u(t, x, θ) .= γtv(x, θ)

and apply Itô’s lemma

u(σ, X̃σ , θ̃σ ) − u(τ, X̃τ , θ̃τ ) =
∫ σ

τ

∂su(s, X̃s , θ̃s)ds

+
∫ σ

τ

AXu(s, X̃s , θ̃s)ds+
∫ σ

τ

Aθu(s, X̃s , θ̃s)ds

+
∫ σ

τ

γs tr
[
Σ̂
(
X̃s , θ̃s

)
H
(
X̃s , θ̃s

)
∂x∂

	
θ u(s, X̃s , θ̃s)

]
ds

+
∫ σ

τ

∂xu(s, X̃s , θ̃s)Σ
(
X̃s , θ̃s

)
dBs

+
∫ σ

τ

γs∂θu(s, X̃s , θ̃s)H
(
X̃s , θ̃s

)	
dVs (117)

where Σ̂(x, θ) denotes the (D × ny )-matrix consisting of the
rows n′ + 1, n′ + 2, . . . , n′ + ny of the matrix Σ(x, θ), and
∂x∂

	
θ u(s, x, θ)ij = ∂θi ∂xj u(s, x, θ). Using the Poisson equa-

tion, we obtain

Ω4,k =
∫ σk

τk

γsg
(
θ̃s

)
·
[
F
(
X̃s , θ̃s

)
− g

(
θ̃s

)	]
ds

=
∫ σk

τk

γsG
(
X̃s , θ̃s

)
ds =

∫ σk

τk

γsAX v
(
X̃s , θ̃s

)
ds

=
∫ σk

τk

AXu
(
s, X̃s , θ̃s

)
ds

which, by using the previous identity, turns into

= γσk v(X̃σk , θ̃σk ) − γτk v(X̃τk , θ̃τk )

−
∫ σk

τk

∂sγsv
(
X̃s , θ̃s

)
ds−

∫ σk

τk

γsAθ v
(
X̃s , θ̃s

)
ds

−
∫ σk

τk

γ2
s tr
[
Σ̂
(
X̃s , θ̃s

)
H
(
X̃s , θ̃s

)
∂	θ ∂xv

(
X̃s , θ̃s

)]
ds

−
∫ σk

τk

γs∂xv
(
X̃s , θ̃s

)
Σ
(
X̃s , θ̃s

)
dBs

−
∫ σk

τk

γ2
s ∂θv

(
X̃s , θ̃s

)
H
(
X̃s , θ̃s

)	
dVs.

(118)

By following the steps in the proof of Lemma 1, we find that
Ω4,k → 0 as k → ∞ a.s.
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For all ε > 0 a.s., we have for k large enough

L̃(θ̃σk ) − L̃
(
θ̃τk

)
= Ω1,k + Ω2,k + Ω3,k + Ω4,k

≥ Ω1,k − ||Ω2,k || − ||Ω3,k || − ||Ω4,k ||

≥ 1
8
λ(κ)||g

(
θ̃τk

)
||2 − ε||g

(
θ̃τk

)
|| − 2ε.

(119)

The lemma then follows by choosing ε = min{ λ(κ)κ2

32 , λ(κ)
32 }

and β = λ(κ)κ2

32 . �
Lemma 4: Under the conditions of Lemma 3, there is a 0 <

β1 < β such that for k > k0

L̃
(
θ̃τk

)
− L̃(θ̃σk −1 ) ≥ −β1 (120)

a.s.
Proof: As in Lemma 3, we obtain

L̃
(
θ̃τk

)
− L̃(θ̃σk −1 ) ≥

∫ τk

σk −1

γsg
(
θ̃s

)
H
(
X̃s , θ̃s

)	
dVs

+
∫ τk

σk −1

γ2
s

2
tr

[
H
(
X̃s , θ̃s

)
H
(
θ̃s

)
H
(
X̃s , θ̃s

)	]
ds

+
∫ τk

σk −1

γsg
(
θ̃s

)
·
[
F
(
X̃s , θ̃s

)
− g

(
θ̃s

)	]
ds.

(121)

It is sufficient to show that the RHS converges to zero a.s. Due
to (113), the first term can be rewritten as

κ

∫ τk

σk −1

γs
g
(
θ̃s

)

Rs
H
(
X̃s , θ̃s

)	
dVs. (122)

Using the argument from the proof of Lemma 3, this converges
to zero a.s. as k → ∞. The treatment of the second and third
terms is identical to the treatment of the terms Ω3,k and Ω4,k in
the proof of Lemma 3. �

APPENDIX C
PROOF OF THEOREM 1

First, define the first exit time from Θ

τ = inf
{
t ≥ 0 : θ̃t /∈ Θ

}
. (123)

If τ <∞, since the paths of θ̃t are continuous, we have θ̃τ ∈ ∂Θ.
Furthermore, since dθ̃t = 0 on ∂Θ, we have θ̃t ∈ ∂Θ for all
t ≥ τ .

Next, consider the case when τ = ∞, which implies that
θ̃t ∈ Θ for all t ≥ 0. Consider the case when there is a finite
number of stopping times τk . Then, there is a finite T such
that ||g(θ̃t)|| < κ for t ≥ T . Therefore, since κ can be chosen
arbitrarily small, limt→∞ ||g(θ̃t)|| = 0. Next, suppose that the
number of stopping times τk is infinite. By Lemmas 3 and 4,
there is a k0 and constants β > β1 > 0 such that for all k ≥ k0
a.s.

L̃(θ̃σk ) − L̃
(
θ̃τk

)
≥ β (124)

L̃
(
θ̃τk

)
− L̃(θ̃σk −1 ) ≥ −β1 > −β. (125)

Thus, we have

L̃(θ̃τn + 1 ) − L̃(θ̃τk 0
)

=
n∑

k=k0

[
L̃(θ̃σk ) − L̃

(
θ̃τk

)
+ L̃(θ̃τk + 1 ) − L̃(θ̃σk )

]

≥ (n+ 1 − k0)(β − β1). (126)

Since β − β1 > 0, when n→ ∞, L̃(θ̃τn + 1 ) → ∞ a.s., and
therefore L̃(θ̃t) → ∞ a.s. This is in contradiction to Proposi-
tion 1(iv), which states that L̃ is bounded from above. Therefore,
there are a.s. only a finite number of stopping times τk . �
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[49] O. Cappé, “Recursive computation of smoothed functionals of hidden
Markovian processes using a particle approximation,” Monte Carlo Meth-
ods Appl., vol. 7, no. 1/2, pp. 81–92, 2001.

[50] P. Del Moral, A. Doucet, and S. Singh, “Forward smoothing using sequen-
tial Monte Carlo,” 2010, arXiv:1012.5390.

[51] P. Rebeschini and R. van Handel, “Can local particle filters beat the curse
of dimensionality?” Ann. Appl. Probab., vol. 25, no. 5, pp. 2809–2866,
2015.

[52] A. Papavasiliou, “Parameter estimation and asymptotic stability in
stochastic filtering,” Stochastic Processes Appl., vol. 116, no. 7, pp. 1048–
1065, 2006.

[53] J. M. F. Moura and S. K. Mitter, “Identification and filtering–optimal recur-
sive maximum likelihood approach,” Lab. Inf. Decis. Syst., Massachusetts
Inst. Technol., Cambridge, MA, USA, Tech. Rep. LIDS-P, 1986.

[54] J. Sirignano and K. Spiliopoulos, “Stochastic gradient descent in contin-
uous time: A central limit theorem,” 2017, arXiv:1710.04273.

Simone Carlo Surace received the M.Sc. de-
gree in theoretical physics and Ph.D. degree in
neuroscience from the University of Bern, Bern,
Switzerland, in 2011 and 2016, respectively.

He is currently a Postdoctoral Researcher
with the Institute of Neuroinformatics, University
of Zurich and ETH Zurich, Zürich, Switzerland.
His research interests include nonlinear filtering,
parameter learning, information theory, informa-
tion geometry, and their application to biology.

Jean-Pascal Pfister received the M.Sc. de-
gree in physics and Ph.D. degree in com-
putational neuroscience from the École Poly-
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